

NDIA Trusted Microelectronics Joint Working Group

Dr. Daniel Radack Institute for Defense Analyses

NDIA Trusted Microelectronics Workshop August 16, 2016

There Isn't One Problem...

- Cost of Design
- Specialty technologies access
- Trusted fab access
- Any fab access
- Globalization of industry
- Supply Chains and Cyber
- Counterfeits, Clones, loss of IP
- Mismatches to commercial; long product cycles
- Over-dependencies that lead to bigger problems

Many Groups Studying the Path Forward for DoD Microelectronics

- Study groups or teams evaluating options:
 - DSB high level guidance
 - USD AT&L supply chain requirements in absence of IBM
 - DMEA matching Trusted supplier base to requirements
 - DMEA/PIPS tiers of trusted standard or catalog products (non-ASICs)
 - IDA options to replace IBM's technology capabilities
 - ODASD(SE) trustworthy framework development
 - MIBP voice of industry
 - GPS Wing technology options study
 - NAS/AF Studies Board Optimizing AF Acquisition of Secure and Reliable Electronics
 - MEC MWG A Strategic Framework for Microelectronics
 - NNSA Microelectronics Fab Analysis of Alternatives
 - ODASD(SE) FPGA way forward

Limited Industry Involvement . . . Established Trusted Microelectronics Joint

August 16, 2016 Working Group to Connect Industry and Government Perspectives

Chemistry

- This talk is focused on Silicon and basics of semiconductor industry
 - Scene setting intention
- How we got to the point of holding these workshops, forming Joint Working Groups, and the current focus from USG on subject
 - It will leave out a lot of the details

<u>IDA</u>

Early Microelectronics

Apply 18 2016

DoD and NASA were primary research sponsors and early customers

Design and manufacturing by small, self-contained teams

Performance; reducing costs key focus

Competitive domestic supplier base for DoD

Today

52 nm (0.65x) minimum pitch

Markets and End Uses

Source: SIA Factbook 2016

Semiconductor Growth Drivers

- >1.4 billion cell phones sold in 2014
- (320M Samsung; 225M Apple; 107M Huawei; 72M Lenovo; 65M Xiaomi; 635M everyone else)
- ~288M PC's sold in 2015 (-8% decline)
- Growth expected in Automotive, Industrial, IoT

DoD Market

Mil/Aero Mkt: \$1-1.5B

Mil share =1.5/335*100 = 0.45%

Sources: [1] IDA Assessment and [2] dataBeans 2014, All data projected for 2015

Application Specific Standard Product (ASSP) - an integrated circuit (IC) dedicated to a specific application market and sold to more than one user. A type of IC with embedded programmable logic, combining digital, mixed-signal and analog products. When sold to a single user, such ICs are ASICs (Gartner)
Distribution Statement A. Cleared for Public Release.

Performance Considerations

Trusted Microelectronics Providers

DoD Foundry Needs and Some Considerations

- Based on observations of foundry usage
- Access to both 200mm and 300mm fab technologies for custom/semi-custom chips
 - Specialty technologies, including legacy devices
 - Low power and high performance digital
 - RF/mmwave
 - IP
 - Full flow must be trusted (masks, designs, WIP, ASIC/foundry, etc.)
 - Specialty packaging
- Considerations for <u>some</u> DoD end-uses
 - DoDI 5200.44 policy for custom designed application-specific integrated circuits (ASICs) in covered systems (and protection from malicious insertions)
 - ITAR/EAR, weapon use considerations, or other military end-uses
 - Additional sensitivities of information in designs or related IP

Production Chain (greatly simplified)

- DoD often sponsors R&D at location of greatest impact for innovation and transition
- DoD programs are vehicles for acquisition of systems and technologies inside systems

Consolidation of Industrial Base

Companies Developing Leading Edge Processes with their own Fabs

- Same Story in Equipment and Fabless Sectors
- Globalization
- Access to technologies

NDIA Trusted Microelectronics Joint Working Group Launched in May 2016

- Developed in conjunction with participants from February NDIA Trusted Microelectronics Workshop
- Study teams formed to explore feasible solutions to defense systems microelectronics challenges
 - Team 1: Determining future requirements . . . what will be needed to maintain military technology advantages?
 - Team 2: Maintaining access to required technologies . . . how can we counter shifts in market dynamics that may impact supply?
 - Team 3: Trustable microelectronics standard products. . . how can we incorporate technologies and components from suppliers outside defense base?
 - Team 4: New methods to instill trust in semiconductor fabrication . . . where will the technology solutions be available?

Lots of Experience and Talent Focused on Core Issues

NDIA Trusted Microelectronics Joint Working Group Teams: Leaders and Members

Team	Topic	Members	Leader
1 Red	Future requirements	10	Charley Adams Northrop Grumman
2 Green	Trustable leading edge technology access	15	Ezra Hall GLOBALFOUNDRIES U.S. 2
3 Yellow	Trustable microelectronics standard products	13	Dan Campion Honeywell
4 Blue	New methods to instill trust in semiconductor fabrication	19	Pat Hays Boeing

A Support & Integration Team Will Provide Assistance As Needed

NDIA Trusted Microelectronics Joint Working Group: Schedule

- First report out: NDIA Trusted Microelectronics Workshop, today,
 Crystal City VA
 - Team and topic introductions
- Second report out: NDIA Trusted Microelectronics Workshop,
 February 2017, Washington DC area
 - Preliminary findings
- Final report: Trusted Accredited Supplier Industry Day at GOMACTech 2017, March 20th, Reno NV
 - Findings and recommendations

Summary

- Need to think through new approaches and strategies for future Trusted access . . . technology solutions as well as acquisition and policy adjustments
- •Options have been studied by government teams. . . need input from industry in interactive discussions
- •NDIA Trusted Microelectronics Joint Working Group launched to address key issues . . . combines perspectives of industry and government experts to develop inputs on most viable solutions

Level of Participation Has Been Encouraging and Appreciated