USAF Developed Generic Model Base Test Equipment: SysML and ATML Standardized Models and Style Guide

Anand Jain (anand.jain@ni.com), Distinguished Engineer, NI Greg Brown (greg.brown@ni.com), Chief Business Manager, NI Aerospace, Defense & Government Kevin Lake (kevin.lake@caci.com), Systems Engineering, CACI Tim Stanley (tim.stanley@caci.com), Program Manager, CACI

Note: NI is now the Test & Measurement Group of Emerson.

Agenda

Walk through the USAF project using a hybrid panel / presenter approach

Please ask questions, provide comments, etc. – your interaction is a primary reason we are doing this

- Our Start Point and Target End Point
- Model-Based Test Engineering motivation, definition
- Brief overviews of SysML & ATML and our vision of how this could be done
- Generic SysML models developed for this Task Order
 - IEEE 1641 TSF Signal and Test Description (AC signal TSF discussed)
 - Five instrument types (generic DMM is discussed)
 - Test Station
- Model Verification
- Initial Style Guide
- Some Key Learnings and Challenges
- Next Steps
- Call for Participation

NDIA Digital Engineering/Digital Test Project

Problem Statement

Driving force behind project was presentation at 2022 ATC Plenary Session

- The DoD and the ATE industry needs faster and less expensive methods to develop, deploy, and sustain automated test solutions.
- The DoD Digital Acquisition mandate is pressuring government acquisition organizations to emplace processes that deliver digitally acquired digital products.
- The industry lacks definition of the digital acquisition process as it relates to ATE and Digital Engineering / Transformation.
- What is the current state of industry to support an ATS Digital Product Model and Acquisition?
- What are the insights Industry may provide to support our DoD ATS partners with their Digital Engineering and Acquisition needs?

Deliver a document for DoD reference that provides insights into the ATS/ATE Defense Industry's capabilities and potential improvements to support Digital Acquisition and the necessary execution of Digital Engineering and Digital Transformation.

2

From NDIA Panel at ATC2023

Without standardization, "everyone" doing it differently will not meet the Digital **Engineering goals**

8/15/

- Industry:
 - Astronix, Boeing, CACI, Keysight, Lockheed, NI, Teradyne
- DoD:
 - Air Force, Army, Navy, Marines

The Beginning of the Journey

- NI and CACI are working with the United States Air Force ATS (Automated Test Systems) Digital Innovation Team at Warner-Robbins AFB
- Explore Digital Acquisition for Government Reference Architecture (GRA) for ATS'
- Goals of first Task Order:
 - Create generic models for signals, test instruments, and test station that in future could become implementation-specific responses to the GRA for future test solutions
 - Initial (very drafty...) MBTE Style Guide for SysML and ATML models

ATSSI II Task Order MBTE ATS Architecture Overview

- Initiated to standardize the way Automated Test Systems are modeled
- Period of Performance 12-Month: 09 August 2023 to 08 August 2024 (Complete)
- Generic SysML models as building blocks
- SysML based on the ATML family of standards

Test Station Description

Delivered Dataset

What is Model-Based Test Engineering?

- DoD and MoD have visions of how they want "everything" to work together and leverage standards in "Digital Engineering"
 - But test contributions are not well understood
- Different groups and different parts of the product life cycle (within the branches, primes, and suppliers) have "different/similar" challenges and desire "different/similar" outcomes
 - But test contributions are not well understood
- Many companies have internal Digital Transformation initiatives with their own desired outcomes
 - But test contributions are not well understood .
- However, a set of common core of required capabilities required can be leveraged to create linked workflows that address:
 - The vision of the DoD/MoD AND
 - The different groups and parts of the life cycle AND
 - Test aspects of Digital Transformation initiatives
- Model-Based Test Engineering is a Digital Engineering initiative to address all the above

- Originating Effective:
- Releasabilit
- Incorporate

DOD INSTRUCTION 5000.97

DIGITAL ENGINEERING

Component:	Office of the Under Secretary of Defense for Research and Engineering		
	December 21, 2023		
:	$Cleared \ for \ public \ release. \ Available \ on \ the \ Directives \ Division \ Website \ at \ https://www.esd.whs.mil/DD/.$		
and Cancels:	Department of Defense Directive 5000.59, "DoD Modeling and Simulation (M&S) Management," August 8, 2007, as amended		
:	Heidi Shyu, Under Secretary of Defense for Research and Engineering		

accordance with the authority in DoD Directive 5137.02, this issuance establishes t ssigns responsibilities, and provides procedures for implementing and using digital engineering development and sustainment of defense systems

Can We go Across the "V" with MBSE in Test?

MBSE is a set of workflows that well support Systems Engineering & has many capabilities / concepts that can be leveraged for test

By adopting MBSE to a subset of Test AND adopting a subset of Test to MBSE, we can create and leverage bi-directional value across the "V" = Model-Based Test Engineering (MBTE)

- Requirements flow down through automated tooling and workflow
- Industry standard formats
 - SysML
 - ATML (IEEE 1641/1671)

- Lowers direct personnel interaction
- Product design iterations trigger automated workflows
- Personnel bandwidth has a low impact on workflow efficiency
- Critical information, such as requirements, preserved through digital threads
- time
- information

Efficiencies scale across the Program/Product Lifecycle Reduces loss of information across lifecycle and through

Enables new modes of monetization of critical

What is SysML?

- **Definition**: SysML, the **Systems Modeling Language**, is a graphical modeling language developed by the Object Management Group (OMG)
- V1 is an extension of UML: It extends the Unified Modeling Language (UML) to address the specific needs of systems engineering
- Modeling Complex Systems: SysML is designed for modeling complex systems, especially those consisting of multiple interconnected systems (often referred to as "systems of systems")
- **Graphical Representation**: It provides a graphical notation for expressing system architecture, requirements, behavior, and other aspects
- Model-Based Systems Engineering (MBSE): SysML supports model-based systems engineering, enabling engineers to capture system requirements, design, and analysis in a standardized way
- Key Diagrams: Common SysML diagrams include Block Definition Diagrams (BDDs), Internal Block **Diagrams (IBDs)**, Parametric Diagrams, Sequence Diagrams, Activity Diagrams
- Tool Support: Various modeling tools, such as Cameo Systems Modeler, support SysML for system design and analysis
- SysML v2 is in final approval stages and is a different language in many aspects than v1
- Related: UML Testing Profile v2.1, RAAML (Risk Analysis and Assessment Modeling Language)

What is ATML?

- **Purpose**: The IEEE 1671 standard defines a framework for the family of ATML standards. It serves as a standard exchange medium for sharing information between components of Automatic Test Systems (ATSs)
- Information Exchange: ATML allows automatic test system and test information to be exchanged in a common format adhering to the extensible markup language (XML) standard
- **Test Description**: It provides an exchange format for specifying test performance, test conditions, diagnostic requirements, and support equipment to locate, align, and verify the proper operation of a Unit Under Test (UUT)
- **Instrumentation Identification**: The standard also specifies an exchange format for identifying instrumentation that may be integrated into an ATS for testing and diagnosing a UUT
- Hardware, Software, and Documentation: Additionally, it defines an exchange format for identifying all the hardware, software, and documentation associated with a UUT
- **Test Configuration**: The standard covers the exchange format for identifying the test configuration used to test for and diagnose faults of a UUT on an automatic test system
- **Companion Standards:** IEEE 1641 Signal and Test Definition, IEEE 1636 Software Interface for Maintenance Information Collection and Analysis (SIMICA) (includes test results data)

SysML & Automatic Test Markup Language (ATML)

SysML

Systems modeling language

Uses diagrams, tables, etc. to convey systems information:

- How it works
- It's requirements
- It's structure •

Often heavily leveraged in development of complicated systems like aircraft, missiles, satellites, etc. (and vehicles)

Can be represented in XML

Open standard

Human and machine readable

Similar data can be represented in both **ATML (IEEE 1671)** Automatic Test Markup Language

Standardizes the format, structure, and types of information and data with a focus on Test

Often heavily leveraged in exchange of test-specific data like channels, instruments, capabilities, test adapters, test stations. **UUT** descriptions

NI's Aerospace, Defense & Government Proposed Future

Domain Tools have proprietary formats, but import/export using standards is common

sDomains Validation Production Depot GŚE

Guiding Principles

- Approach model development from a workflow-centric view
- Connectivity between ATML and SysML
- Models are used for information exchange and enable workflow automation
- Reasonable and straight-forward to modify in SysML
- Follow recommended practices for SysML v1 in Cameo
- Follow recommended practices for IEEE 1671 (ATML) and IEEE 1641
- Minimize test engineer's use of SysML

Model Contents Driven by Needs of Specific Workflows

- Goal is to have only required information in SysML (Cameo v21) and not to replicate IEEE 1671/1641 in their entirety
 - Use references when possible, etc.
 - Ease of correlation and create/translate bi-directionally between SysML and ATML
- Each workflow will have its own requirements for model contents
- Models enrichen over time with required contents for all target workflows
- Some workflows of consideration:
 - Digital Acquisition
 - Test Requirements vs Capabilities Analysis
 - TPS Auto Generation
 - Test Equipment Definition and Design

Asset Model Library

- Base library is done in ATML and translated into SysML (Cameo today)
- Base library elements are complete ATML representations that can be used in multiple workflows and are SysML agnostic
- ATML models can be translated into SysML models based on the SysML Style Guide (or future profile / domain overlay v2)
 - Only necessary information for the specific workflow should be translated
- The libraries can become part of the digital thread for standardized usage, versioning, management, etc.
- Interoperable models of test equipment, instruments, test procedure sets, etc. can be provided by industry and others IF standardization is achieved

Standardization, Define Once, Interoperate, Reuse & Modify, etc.

SysML Model Hierarchy

Using an ATML Model in Cameo v21

Carneo Systems Modeler 2021x - SampleDMM.mdzip R

downstream usage

6 ×

Connecting ATML to SysML v1

Standardization, Define Once and Reuse

Instrument Capabilities Block

Instruments use Part > Block >...

1641 Signal Models in Cameo v21

- Uses IEEE 1641 Signal and Test Definition standard
- Signal Definitions: Allows for the creation of signal definitions that can be used across various test platforms. These definitions are built upon formal mathematical specifications
- Basic Signal Components (BSC): These are the fundamental building blocks used to create more complex signals. They include elements like loads, impedances, and other signal properties
- **Test Signal Framework (TSF):** TSF is a library of signal components (BSCs) that can be combined to form complex signals.

- NI imported and exported the current IEEE 1641 TSF with Cameo v21
- IEEE 1641 signal models
 - Each Signal uses a TSF Signal block that has a BDD
 - Each Signal block describes the Model and the Interface to the Signal
- All TSF Signal blocks use a stereotype, "TSFBase", as the block
- The Model block of the Signal uses a stereotype, "SignalBase", as the block
- The Model block contains an Out Value property that identifies the Signal being generated

AC Signal TSF

AC Signal TSF

- The Model block uses an IBD to describe the model
 - Blocks for each Part property of the Model
 - Each Part property Block uses Value properties to describe the various attributes of the Signal model
- The Interface block
 - Contains schema tag of the Interface block and the namespace of the signal
- The Interface block uses an IBD to describe the signal's interface
 - Part property Block in the IBD uses Value properties to describe attribute types and default values of the signal's interface
- All Signals contain a Package called Types that contains the definition of various Blocks used in the Model and Interface

«block»	
«SignaiBase»	
Model	
parts Constant : Constant Sinusoid : Sinusoid Sum : Sum	
values Out : String = AC_Signal xmlns : String = urn:IEEE-1641:2010:STDBSC]
훤	1
	«block»
	Interface
AC_SIGNAL : AC_SIGNAL	parts
	values

훤

Model Block

Interface Block

ibo	I [Block] Model [Model]		
	Constant : Constant values amplitude : String = dc_offset CollectionIndex : Integer = 1 name : String = DC_Offset	ibd [Block] Interface [Interface] AC_SIGNAL : AC_ values	SIGNA
	Sinusoid : Sinusoid values amplitude : String = ac_ampl CollectionIndex : Integer = 2 frequency : String = freq name : String = AC_Component phase : String = phase	ac_ampl : voltage[volt] dc_offset : voltage[volt] = 0.0 V freq : frequency[hertz] phase : initial phase of electric voltage	e[radiar
	Sum : Sum values CollectionIndex : Integer = 3 In : String = DC_Offset AC_Component name : String = AC_Signal	Units	De

Generic Instrument Models

• Five models were developed

- Uses the Signal TSF by reference
- Models were developed as ATML XML files and imported into Cameo v21

Switch Matrix

ATML Instrument Model

- Identification
- Interface (electrical)
- Components
 - Identification of the subassemblies
- Control
 - Control languages, drivers, extension, firmware, and tools
- Configuration Options
 - Options are values the user can modify, which will persist after a power cycle of the hardware item
- Factory Defaults
- Calibration Requirements
- Operational Requirements
- Environmental Requirements
- Power Requirement
- Physical Characteristics

Identification of the mass, volume, and measurements for the stument

- Errors
- NetworkList
 - Ports on the hardware item are connected
- Buses
- Power On Defaults
- Paths
 - Identify the characteristics of the signal paths through the Instrument and interface hardware
- Specifications
- Resources
 - Physical entities within the instrument that provide source, sensor, or load capabilities.
- Switching
- Capabilities
 - Types of signals that an instrument can produce (or measure) and the uncertainties involved in either generating or producing the signals

Generic DMM Instrument – Cameo v21

Instrument and Signal Connectivity

bdd [Block] Capability [Capability]

«block»

OperationalRequirement

parts

values

name : String = Ambient temperature CollectionIndex : String = 1

Generic Test Station Model – Cameo v21

- Test Station model contains a Block called "TestStationDescription" that contains all the information associated with a Test Station model
- Root block of the Test Station model models all elements using Part and Value properties
- All namespaces defined in the IEEE 1671 XML definition of the Test Station model are stored using Value properties
 - Used to define "Traced From" properties of all children elements of the model
- Test Station model references imported IEEE 1641 TSF and Instruments

- All other attributes associated with the Test Station model are stored as Value properties of the Root block
- The model refers to other Signal models using Reference property to refer to the imported Signal Model
 - The properties of the Signal Interface can be be modified using the type as defined in the Signal model
- The model refers to other Instrument models using Reference property to refer to the imported Instrument Model

Generic DMM Instrument – Cameo v21

Instrument References

ntF	Refere	ence	
ntF	Refere	ence	
entF	Refere	ence	

DMM

Switch Matrix

Model Verification

- Requires both ATML and SysML related verification
- Validates the model against
 - \circ SysML style guidelines
 - ATML standard
 - Style Guide
- Can be enhanced to add custom rules

Initial Style Guide Draft

- Describes how various components of an Automatic Test System (ATS) can be modeled using Cameo and SysML profilers provided by National Instruments that adheres IEEE 1671 and IEEE 1641 standards
- Can also be used as a manual guide to validate the model
- Assumes the reader is familiar with concepts related to Cameo, MBSE, SysML, IEEE 1671 (ATML) Standards, IEEE 1641 standard, ATS
- Does not document standard Cameo and MBSE best practices
- Is a guide for modelers and not a step-by-step instruction set to create/validate the model
- It is meant to be a supporting document for Cameo models, IEEE 1671 and 1641 XML documents that were created as part of the Task Order
- Note: This style guide represents an initial release and feedback is welcomed

ATSSI II Task Order MBTE ATS Architecture Result

- Initial way to standardize how Automated Test Systems are modeled
- Five generic instruments and a generic test station model
- Standardized generic ATML & SysML models as building blocks

- SysML models based on the ATML family of standards
- Demonstrated bi-directional translation
- Foundation for further work has been established

Figure based on presentation given by Mike Malesich (2022, August 30). DoD ATS Framework IPT Relation to Digital Thread [Conference panel presentation]. AUTOESTCON 2022, National Harbor, Maryland, United States.

Some Key Learnings and Challenges

- Use newer versions of Cameo (faster, many quirks addressed)
- Models need to be approached from the target workflow perspective
- Only put as much ATML in the SysML models as needed for the target workflow
- No predefined and limited previous workflow approaches to build from exploring new territory
- SysML v2 is on the horizon...

Path to Model-Based Test Engineering

Target State

- Models as Source of truth
- Knowledge capture
- Downstream test is autogenerated and/or derived
- · Lowest risk over time
- Decision Support System/ Test Capabilities Analysis

Full MBTE Implementation Models are Source of Truth

 Test Requirements are negotiated between SE, DE

Knowledge is immortalized for program life

Next Steps

A lot of work still to be done

- Wider participation in the standardization efforts by industry and government
- Style Guide...
- More use cases and workflows to explore
- Specific instrument models
- Further definition of the test station model
- Specific test station models
- And the list goes on...

Let's make test engineering cool for the upcoming generation

Call for Participation

- To achieve standardization on the models wider DoD & industry participation is needed
- NI is looking into how to make these models (ATML and SysML as Cameo v21 files) and initial draft style guide available
- Potential collaborations
 - Direct engagements
 - Contact tim.stanley@caci.com or greg.brown@ni.com
 - IEEE SSC20 study Group on "ATML compatible representation in SysML of test requirements"
 - Contact <u>ion.neag@restonsoftware.com</u>
 - OMG SysML V2 Digital Acquisition Managed Community
 - Started operation Sept, 2023
 - OMG SysML v2 System Modeling Managed Community for Validation
 - Under definition
 - Contact <u>greg.brown@ni.com</u> if you would like to be kept up to date on the models & style guide availability and/or the OMG SysML managed communities working groups

